Category Archives: biomimetics

Spiderman-style silk thrower

I quite like Spiderman movies, and having the ability to fire a web at a distant object or villain has its appeal. Since he fires web from his forearm, it must be lightweight to withstand the recoil, and to fire enough to hold his weight while he swings, it would need to have extremely strong fibers. It is therefore pretty obvious that the material of choice when we build such a thing will be graphene, which is even stronger than spider silk (though I suppose a chemical ejection device making spider silk might work too). A thin graphene thread is sufficient to hold him as he swings so it could fit inside a manageable capsule.

So how to eject it?

One way I suggested for making graphene threads is to 3D print the graphene, using print nozzles made of carbon nanotubes and using a very high-speed modulation to spread the atoms at precise spacing so they emerge in the right physical patterns and attach appropriate positive or negative charge to each atom as they emerge from the nozzles so that they are thrown together to make them bond into graphene. This illustration tries to show the idea looking at the nozzles end on, but shows only a part of the array:printing graphene filamentsIt doesn’t show properly that the nozzles are at angles to each other and the atoms are ejected in precise phased patterns, but they need to be, since the atoms are too far apart to form graphene otherwise so they need to eject at the right speed in the right directions with the right charges at the right times and if all that is done correctly then a graphene filament would result. The nozzle arrangements, geometry and carbon atom sizes dictate that only narrow filaments of graphene can be produced by each nozzle, but as the threads from many nozzles are intertwined as they emerge from the spinneret, so a graphene thread would be produced made from many filaments. Nevertheless, it is possible to arrange carbon nanotubes in such a way and at the right angle, so provided we can get the high-speed modulation and spacing right, it ought to be feasible. Not easy, but possible. Then again, Spiderman isn’t real yet either.

The ejection device would therefore be a specially fabricated 3D print head maybe a square centimeter in area, backed by a capsule containing finely powdered graphite that could be vaporized to make the carbon atom stream through the nozzles. Some nice lasers might be good there, and some cool looking electronic add-ons to do the phasing and charging. You could make this into one heck of a cool gun.

How thick a thread do we need?

Assuming a 70kg (154lb) man and 2g acceleration during the swing, we need at least 150kg breaking strain to have a small safety margin, bearing in mind that if it breaks, you can fire a new thread. Steel can achieve that with 1.5mm thick wire, but graphene’s tensile strength is 300 times better than steel so 0.06mm is thick enough. 60 microns, or to put it another way, roughly 140 denier, although that is a very quick guess. That means roughly the same sort of graphene thread thickness is needed to support our Spiderman as the nylon used to make your backpack. It also means you could eject well over 10km of thread from a 200g capsule, plenty. Happy to revise my numbers if you have better ones. Google can be a pain!

How fast could the thread be ejected?

Let’s face it. If it can only manage 5cm/s, it is as much use as a chocolate flamethrower. Each bond in graphene is 1.4 angstroms long, so a graphene hexagon is about 0.2nm wide. We would want our graphene filament to eject at around 100m/s, about the speed of a crossbow bolt. 100m/s = 5 x 10^11 carbon atoms ejected per second from each nozzle, in staggered phasing. So, half a terahertz. Easy! That’s well within everyday electronics domains. Phew! If we can do better, we can shoot even faster.

We could therefore soon have a graphene filament ejection device that behaves much like Spiderman’s silk throwers. It needs some better engineers than me to build it, but there are plenty of them around.

Having such a device would be fun for sports, allowing climbers to climb vertical rock faces and overhangs quickly, or to make daring leaps and hope the device works to save them from certain death. It would also have military and police uses. It might even have uses in road accident prevention, yanking pedestrians away from danger or tethering cars instantly to slow them extra quickly. In fact, all the emergency services would have uses for such devices and it could reduce accidents and deaths. I feel confident that Spiderman would think of many more exciting uses too.

Producing graphene silk at 100m/s might also be pretty useful in just about every other manufacturing industry. With ultra-fine yarns with high strength produced at those speeds, it could revolutionize the fashion industry too.


Using carbon to make a Landspeeder or hoverboard

You are probably familiar with Marty McFly’s hovering skateboard and the Star Wars Landspeeder hover-car. How feasible are they? Like most futurists, I get asked about flying cars every week.

Let’s dispose of pedantry first. Flying cars do exist. Some are basically vertical take off planes without the wings, using directed air jets to stay afloat and move. I guess you could use a derivative of that to make a kind of land-speeder. The hovercraft is also a bit Landspeedery, but works differently. Hovercraft are OK, but a Landspeeder floats higher off the ground and without the skirt so it it’s no hovercraft. Well, we’ll see.

Carbon can be used to make a Star Wars Landspeeder or Marty McFly’s hover board from Back to the Future. Both would be almost silent, with no need for messy skirts, fans, or noisy ducted air jet engines, and could looks like the ones in the films. Or you could employ a designer and make one that looks nice instead.


Anti-gravity may one day be possible but we don’t know how to do that yet. Conventional wisdom says that either you use noisy ducted air jets or a hovercraft skirt, or else magnetic levitation, as the Landspeeder is meant to be anyway, which can be done but so far needs a special metal track. It couldn’t work on a pavement or side-walk. You can’t use simple magnetic repulsion effects to levitate above concrete or asphalt.

I pointed out a good while ago with my linear induction bicycle lane idea that you could use a McFly style hover-board on it. My daughter’s friends were teasing me about futurists and hoverboards – that’s why.

That would work. It would be totally silent. However, the Landspeeder didn’t stay on a linear induction mat laid just under the entire desert surface, did it? That would just be silly. If you had a linear induction mat laid under the entire desert surface, you’d put some sort of horse shoes on your camel and it could just glide everywhere at high speed. You wouldn’t need the Landspeeder.

Ignoring conventional wisdom, with some redesign, you can use magnetic levitation to produce a landspeeder or hoverboard that would work on a sidewalk, pavement, road, or even a desert surface. Not water, not the way McFly did anyway. You could also make the hover tanks and everything else that silently hovers near the ground in sci-fi films. And force fields. Sand, asphalt and concrete aren’t made of metal but that doesn’t matter.

Graphene is a really good conductor. Expensive still, but give it a few years and it’ll be everywhere. It is a superb material. With graphene, you can make thin tubes, bigger than carbon nanotubes but still small bore. You could use those to make coils around electron pipes, maybe even the pipes themselves. Electron pipes are particle guides along which you can send any kind of charged particles at high speed, keeping them confined using strong magnetic fields, produced by the coils around the pipe, a mini particle accelerator. I originally invented electron pipes as a high bandwidth (at least 10^22bit/s) upgrade for optical fibre, but they have other uses too such as on-chip interconnect, 3d biomimetic microprinting for things like graphene tubes, space elevator rope and others. In this case, they have two uses.

First you’d use a covering of the pipes on the vehicle underside to inject a strong charge flux into the air beneath the hoverboard (if you’re a sci-fi nut, you could store the energy to do this in a super-capacitor and if you’re really twisted you might even call it a flux capacitor, since it will be used in the system to make this electron flux). The result is a highly charged mass of air. Plasma. So what?

Well, you’d also use some rings of these tubes around the periphery of the vehicle to create a very strong wall of magnetic field beneath the vehicle edge. This would keep the charged air from just diffusing. In addition, you’d direct some of them downwards to create a flow of charged air that would act to repel the air inside, further keeping it confined to a higher depth, or altitude, so you could hover quite a distance off the ground.

As a quick but important aside, you should be able to use it for making layered force fields too, (using layers of separated and repelling layers of charged air. They should resist small forces trying to bend them and would certainly disrupt any currents trying to get through. But maybe they would not be mechanically strong ones. So, not strong enough to stop bullets, but enough to stop or severely disrupt charges from basic plasma weaponry, but there aren’t many of them yet so that isn’t much of a benefit. Anyway… back to the future.

Having done this, you’ll hopefully have a cushion of highly charged air under your vehicle, confined within its circumference, and some basic vents could make up for any small losses. I am guessing this air is probably highly conductive, so it could be used to generate both magnetic and electrostatic forces with the fields produced by all those coils and pipes in the vehicle.

So now, you’d basically have a high-tech, silent electromagnetic hovercraft without a skirt to hold the air in, floating above pretty much any reasonably solid surface, that doesn’t even have to be smooth. It wouldn’t even make very much draft so you wouldn’t be sitting in a dust cloud.

Propulsion would be by using a layer of electron pipes around the edge of the vehicle to thrust particles in any direction, so providing an impulse, reaction and hence movement. The forward-facing and side facing pipes would suck in air to strip the charge off with which to feed the charged air underneath. Remember that little air would be escaping so this would still be silent. Think of the surface as a flat sheet that pushes ionised air through quite fast using purely electromagnetic force.

Plan B would be to use the cover of electron pipes on the underside to create a strong downward air flow that would be smoothed and diffused by pipes doing the side cushion bit. Neither would be visible and spoil the appearance, and smooth flow could still be pretty quiet. I prefer plan A. It’s just neater.

There would be a little noise from the air turbulence created as the air flow for propulsion mixes with other air, but with a totally silent source of the air flow. So basically you’d hear some wind but not much else.

Production of the electron pipes is nicely biomimetic. Packing them closely together in the right pattern (basically the pattern they’d assume naturally if you just picked them up) and feeding carbon atoms with the right charge through them at the right intervals could let you 3D print a continuous sheet of graphene or carbon nanotube. Biomimetic since the tube would grow from the base continuously just like grass. You could even produce an extremely tall skyscraper that way. 30km is a reasonable limit for 2045, but recent figures for graphene strength suggest that structures up to 600km may be theoretically possible by the end of the century.

Could it work. Yes, I think so. I haven’t built a prototype but intuitively it should be feasible. Back to the Future Part 1 takes Marty to Oct 21, 2015. We just passed that and two prototypes hoverboards were available then. Sadly, neither used my technique but a good lab could just about make most and maybe all of this capability any time soon. On the other hand, Star Wars is set very far away and very long ago, so we’re a bit late for that one.

So, feasible, and just a little way in the future. Pretty much the entire vehicle could be carbon based. Carbon fibre and carbon foam would provide most of the structure, graphene windows for streamlining, strength, protection and transparency, graphene and carbon nanotubes for engines, power and levitation.

Carbon fur: biokleptic warmth and protection

Some women would rather die than kill an animal to steal its fur, but we can steal ideas from nature without harming anyone or anything. That’s normally called biomimetics but really it should be called bio-kleptics. People call it biomimetics because they want to pretend it isn’t stealing but ‘only copying’, as if nature shouldn’t be entitled to any intellectual property protection. Then again, imitation is a form of flattery, and we are ourselves part of nature, so maybe we have inheritance-based rights to copy whatever we see. So let’s not make a big deal of it.

Fur is a great idea. Millions of long fine strands of material are extruded from the base to make a dense but very soft material that traps air to keep the animal warm, give some protection from sun and scratches by thorns, and make it harder to eat. If it’s dense enough, or coated with oil, also preventing water from getting through. If it looks right, it also makes the animal cute to humans, so they’re less likely to murder it and may even sponsor it as a pet, with free accommodation, medicare and food.

So… carbon fur. Well, obviously it would be based either on nanotubes, or graphene strands, or some combo. Both can make long hollow fibres (aha! there’s their duvet and pillows sorted for a future blog) so are perfect to make fur. Conventional synthetic fur coat manufacturers have already got perfectly good techniques for making fur, so if I was lazy, I could just use them. But the Carbon Trio need something special. And they really are fond of nature, so we need some technique that allows the carbon skin to self organise into follicles and extrude fur filaments from there. And it just so happens, I made one earlier.

Self-organisation is the sound basis of a huge multitude of natural phenomena. Even human life starts as a single cell, and after some divisions the cells have to start differentiating and self-organising into structures that become limbs or organs or whatever. When I was asked to study DNA as a computing basis in 1992, I got sidetracked when I was reading up on cell differentiation and realised that the same principle could be used to self organise electronic systems such as exchanges, chips, circuits and even processors. A few years later, another BT engineer, whose name I have sadly forgotten, adapted similar self-organisation principles involved in hair growth on a fruit fly’s abdomen to make a mechanism for self organising mobile phone networks. Both of us independently used nature’s idea of hormone gradients. It works well, both in nature and in engineering. Given nature’s other idea of membranes, and linking the two,very complex systems can be self organised. So that’s the basis of how carbon filaments in carbon fur arrange themselves so that they’re nicely spread out without having to manually place every single one. Each follicle would be a tiny graphene strand printer/extruder, and the follicles would self-organise using virtual hormone gradients and membranes. In practice these virtual hormone gradients can be magnetic or electric fields, chemical gradients, signal strengths or any other physical property that can be varied. Membranes can be digitally demarked by naming or use physical  interference effects or barriers.

So what about extrusion? Well, that’s easy enough too, easy enough when you only have to do something on paper anyway. Here:

printing graphene

Imagine a 3D printer with a head that is a packed array of carbon-atom-emitting tubes. It could be made with a nice hexagonal layout as in the picture above, simply by aligning many layers of graphene on top of each other. 6 carbon atoms in a hexagon just make room for a 7th to come through the centre. If that doesn’t work because it is too tight a fit, carbon nanotubes can be made to size to do the job. I’ve only drawn a small section of the head for simplicity. This diagram only shows the print face, not the 3D structure.

In the diagram above, each vertex is a carbon atom. (The colours are only to clarify the diagram, the vertices that are shared are just one atom, not two). If carbon atoms are forced through the centres of the hexagons in the ‘bit pattern’ shown on the right, driven by a high frequency and perfectly phased signal, graphene would come out of the printer. Bear with me here.

I haven’t got the diagram wrong. The trouble at first glance is that the distances between the centres obviously isn’t the same as the length of each side of the hexagon, so the hexagonal pattern of atoms streaming out won’t be the same dimension as the graphene used to make the print head. That isn’t a problem here.

With this technique, it would not be able to make large continuous sheets of graphene, but by phasing the emissions of each pipe, what it could do is to produce thin strands of graphene, and a range of widths of strand would be feasible. The phasing is all-important, as it would drive the production of the strand around the print head as it emerges.The carbon atoms would converge and bond as they emerge if the ionisation and phasing is correct. Phasing would need waves of EM field to pass through the graphene, originating from transmitters on the circumference. Ionisation of the carbon atoms would be before they enter the tubes, and although they would be sucked into the tubes in a continuous stream, their bit pattern emerges as they are spread out selectively by the fields acting on them. As I said, phasing is all important.

Each print head would produce one strand of graphene. The strand would be very fine. With clusters of these print heads extruding strands of graphene, you would get graphene fur. Rubbish if you want sheet, but great if you want fur. So there we are. Just as Post-it glue was accidentally found while trying to design something else, poor design for a graphene sheet printer turns out to be just what we need to make carbon fur. Spacing the print heads to the required pattern, any density of carbon fur is possible from sparse to dense.

The fur filaments would emerge from the graphene layers that make up the print heads, and these would not be continuous, but attached to an under-layer in patches so that they can stay in place. Using a different attachment pattern for each layer of print head allows great strength and maintains alignment. This under-layer provides the solid foundation and material strength. It could use combinations of graphene, nanotubes and mostly carbon fibre, together with the fur itself.

OK, it looks OK in theory, even if I haven’t bothered explaining every detail, but this would be difficult to do, so puts this kind of technology a bit further in the future than a lot of other carbon products.

Carbon fur also makes good protection and insulation.

Biomimetic fabrics and carbon fur will feature in some later blogs too. And the printer here is capable of very fine print, and very intricate 3D printing, so it will feature too, eventually.



Video make-up

My fictional superheroine Carbon Girl wears smart makeup, but although she is fictional, it is entirely feasible and and this is how it might work. A variation of this is that isn’t so carbon-based is on my other blog:

Butterfly wings can be very pretty with complex iridescent colours. But they use diffraction to make colours rather than dyes. Fortunately, graphene flakes will work just as well as scales on a butterfly. And copying nature makes Carbon Girl happy.

Carbon-based smart make-up could use a suspension of graphene flakes, carbon foam and strands of nanotube.

Every month, a woman would have active skin printed over her skin, which would be painless and take 10 minutes or maybe half an hour. This is a super-thin graphene layer that makes an intricately patterned electrical circuit covering her whole skin, though self-organisation and rapid reconfiguration mean that minor errors or damage from everyday wear only slowly and gradually degrade its functioning. This circuit can use differences in skin temperature to generate electricity for regeneration pulses a few times every hour, on ordinary women, and can also be charged when they uses electric toothbrushes or mobiles, or are near a wireless LAN.

The pulses in this electronics layer create a magnetic field, and that causes eddy currents in the graphene flakes, which then produce their own magnetic field. The interaction of these fields allows the particles in the make-up to be manipulated into their required orientation, and over a patch of skin, the custom orientation of millions of particles changes the colour of the make-up.

None of the electronics layer would be visible to the naked eye, circuitry being typically just a few microns across and an atom thick. Only the skin and make-up would be visible.

A woman would just smear smart make-up all over her face, snap her fingers, and the make-up immediately takes on her chosen appearance. Her active skin immediately recharges and since the flakes can reorientate many times every second, she has video make-up.

Her active skin knows where she is, who she is with, and what time it is, so her appearance automatically changes as she goes through the day, video here, a static appearance there. But she can over-rule it any time using thought recognition.

The make-up gives her the appearance she wants, but it also is useful to enable disguises and camouflage. But mainly, with a 30 minute session once a month for the active skin renewal, and then just a few seconds a day to put the make-up on, it saves her lots of time. So she can do even more to save the world. Every little helps.

Components of perfume can also be selectively vaporized according to the context of her situation, using printed active skin heating elements. Pheromones help her to influence others too.

The appearance of her make-up could be controlled by her electronic jewelry, or on voice or thought command, but it can also tap directly into her emotional state when she isn’t actively controlling it. When she wants to show her emotions, her make-up amplifies her expressions. When she wants to hide them, it works well to give the opposite impression. When she is distracted while talking to someone, her make-up can run on autopilot to mimic attention.

Ultra-tall structures – from ground into space

I was 8 when Armstrong and Aldrin set foot on the moon. It was exciting. My daughter is 18 and has never witnessed anything of the same order of excitement. The human genome project was comparable in some ways but lacked the Buzz.

There is excitement about going back now. We will, and on to Mars. We can do space so much more safely now than back in the 60s.  Commercial companies are pioneering space tourism and later on will pioneer the mining bits. But the excitement recently is over the space elevator. The idea is that a cable can stretch all the way from the surface out into space, balanced by gravity, and used as a means to cart stuff back and forth instead of having to use rockets, making it easier, less expensive and less dangerous.

It will happen eventually on Earth. We need to make new materials that are strong enough. Carbon nanotube cables and other fancy materials will be needed that we can’t make long and strong enough yet. But the moon has lower gravity so it is much easier there and will likely happen earlier.

There are plenty of web articles about space elevators already so I don’t need to repeat everything here. But a space elevator is supported from above, a regular building is supported from below. How can we build one very tall from the ground?

I recently issued a report on 2045 construction that among other things also discussed spaceports up to 30km tall:

A 30km tall spaceport on Earth could make use of atmospheric buoyancy for the lower end which of course we wouldn’t get on the moon for the spaceport coming home, but we also wouldn’t get wind on the moon to add stresses. On the moon gravity is less so the structure could be much taller. On the moon a graphene structure could form as much as the bottom 150-200km of the climb. It might offer a nice synergy. The diagram above shows some of the possible structure for the columns, biomimetically inspired by plant stems, though this is just one suggestions, and there are very many ways they could be designed.

This could be enhanced by filling columns with graphene foam:

Since I wrote that, carbon foams have been made and they are 6 times lighter than air.

So how about a 30km tall building? Using multilayered columns using rolled up or rippled graphene and nanotubes, in various patterned cross sections, it should be possible to make strong threads, ribbons and membranes, interwoven to make columns and arrange them into an extremely tall pyramid.

This could be used to make super-tall structures for science and tourism or spaceports, or a home for celebrities, well out of sight of the Paparazzi.

Think of a structure like the wood and bark of a tree, with the many tubular fine structures. Engineering can take the ideas nature gives us and optimise them using synthetic materials. Graphene and carbon nanotubes will become routine architectural materials in due course. Many mesh designs and composites will be possible, and layering these to make threads, columns, cross members with various micro-structures will enable extremely strong columns to be made. If the outer layer is coated to withstand vacuum, then it will be possible to make the columns strong enough to withstand atmospheric pressure, but with an overall density the same as the surrounding air or less. Pressure is of course less of an issue higher up, so higher parts of the columns can therefore be lighter still.

We should be able to make zero weight structures in the lower atmosphere, and still have atmospheric buoyancy supporting some of the weight as altitude increases. Once buoyancy fails, the structure will have to be supported by the structure below, limiting the final achievable height.  Optimising the structures to give just enough strength at the various heights, with optimised mesh structure and maximal use of buoyancy, will enable the tallest possible structures. Very tall structures indeed could be made.

So, think of making such a structure, with three columns in a triangular cross-section meeting at 43 degrees at the top (I recall once calculating that is the optimal angle for the strongest A frame in terms of load-bearing to weight ratio, though it ignores buoyancy effects, so ‘needs more work’.

30km tall structures would not be ideal for large scale habitation, since much of the strength in the structure would be to support the upper parts of the structure itself and whatever platform loading is needed. But for a celebrity home, small military observation base or a decent sized lab, it might be fine. The idea may be perfect for pressurised platforms at the top for scientific research, environmental monitoring, telescopes, space launches, tourism and so on. The extreme difference in temperature may have energy production uses too.

Getting the first 30km off the ground without needing any rocket fuel would greatly reduce space development costs, not to mention carbon and high altitude water emissions.

A simple addition to this would be to add balloons to the columns at various points to add extra buoyancy, but they cannot give much extra lift once the atmosphere is too thin so probably wouldn’t make much difference.

Nevertheless, the physics limits are pretty good. 30km is a reasonably achievable goal for a 2045 spaceport, but given the known strength of graphene and carbon nanotubes, a 600km tall building on Earth would be the limit, and that is higher than the Hubble telescope!