The future of nylon: ladder-free hosiery

Last week I outlined the design for a 3D printer that can print and project graphene filaments at 100m/s. That was designed to be worn on the wrist like Spiderman’s, but an industrial version could print faster. When I checked a few of the figures, I discovered that the spinnerets for making nylon stockings run at around the same speed. That means that graphene stockings could be made at around the same speed. My print head produced 140 denier graphene yarn but it made that from many finer filaments so basically any yarn thickness from a dozen carbon atoms right up to 140 denier would be feasible.

The huge difference is that a 140 denier graphene thread is strong enough to support a man at 2g acceleration. 10 denier stockings are made from yarn that breaks quite easily, but unless I’ve gone badly wrong on the back of my envelope, 10 denier graphene would have roughly 10kg (22lb)breaking strain. That’s 150 times stronger than nylon yarn of the same thickness.

If so, then that would mean that a graphene stocking would have incredible strength. A pair of 10 denier graphene stockings or tights (pantyhose) might last for years without laddering. That might not be good news for the nylon stocking industry, but I feel confident they would adapt easily to such potential.

Alternatively, much finer yarns could be made that would still have reasonable ladder resistance, so that would also affect the visual appearance and texture. They could be made so fine that the fibers are invisible even up close. People might not always want that, but the key message is that wear-resistant, ladder free hosiery could be made that has any gauge from 0.1 denier to 140 denier.

There is also a bonus that graphene is a superb conductor. That means that graphene fibers could be woven into nylon hosiery to add circuits. Those circuits might be to harvest radio energy, act as an aerial, power LEDS in the hosiery or change its colors or patterns. So even if it isn’t used for the whole garment, it might still have important uses in the garment as an addition to the weave.

There is yet another bonus. Graphene circuits could allow electrical supply to shape changing polymers that act rather like muscles, contracting when a voltage is applied across them, so that a future pair of tights could shape a leg far better, with tensions and pressures electronically adjusted over the leg to create the perfect shape. Graphene can make electronic muscles directly too, but in a more complex mechanism (e.g. using magnetic field generation and interaction, or capacitors and electrical attraction/repulsion).

Spiderman-style silk thrower

I quite like Spiderman movies, and having the ability to fire a web at a distant object or villain has its appeal. Since he fires web from his forearm, it must be lightweight to withstand the recoil, and to fire enough to hold his weight while he swings, it would need to have extremely strong fibers. It is therefore pretty obvious that the material of choice when we build such a thing will be graphene, which is even stronger than spider silk (though I suppose a chemical ejection device making spider silk might work too). A thin graphene thread is sufficient to hold him as he swings so it could fit inside a manageable capsule.

So how to eject it?

One way I suggested for making graphene threads is to 3D print the graphene, using print nozzles made of carbon nanotubes and using a very high-speed modulation to spread the atoms at precise spacing so they emerge in the right physical patterns and attach appropriate positive or negative charge to each atom as they emerge from the nozzles so that they are thrown together to make them bond into graphene. This illustration tries to show the idea looking at the nozzles end on, but shows only a part of the array:printing graphene filamentsIt doesn’t show properly that the nozzles are at angles to each other and the atoms are ejected in precise phased patterns, but they need to be, since the atoms are too far apart to form graphene otherwise so they need to eject at the right speed in the right directions with the right charges at the right times and if all that is done correctly then a graphene filament would result. The nozzle arrangements, geometry and carbon atom sizes dictate that only narrow filaments of graphene can be produced by each nozzle, but as the threads from many nozzles are intertwined as they emerge from the spinneret, so a graphene thread would be produced made from many filaments. Nevertheless, it is possible to arrange carbon nanotubes in such a way and at the right angle, so provided we can get the high-speed modulation and spacing right, it ought to be feasible. Not easy, but possible. Then again, Spiderman isn’t real yet either.

The ejection device would therefore be a specially fabricated 3D print head maybe a square centimeter in area, backed by a capsule containing finely powdered graphite that could be vaporized to make the carbon atom stream through the nozzles. Some nice lasers might be good there, and some cool looking electronic add-ons to do the phasing and charging. You could make this into one heck of a cool gun.

How thick a thread do we need?

Assuming a 70kg (154lb) man and 2g acceleration during the swing, we need at least 150kg breaking strain to have a small safety margin, bearing in mind that if it breaks, you can fire a new thread. Steel can achieve that with 1.5mm thick wire, but graphene’s tensile strength is 300 times better than steel so 0.06mm is thick enough. 60 microns, or to put it another way, roughly 140 denier, although that is a very quick guess. That means roughly the same sort of graphene thread thickness is needed to support our Spiderman as the nylon used to make your backpack. It also means you could eject well over 10km of thread from a 200g capsule, plenty. Happy to revise my numbers if you have better ones. Google can be a pain!

How fast could the thread be ejected?

Let’s face it. If it can only manage 5cm/s, it is as much use as a chocolate flamethrower. Each bond in graphene is 1.4 angstroms long, so a graphene hexagon is about 0.2nm wide. We would want our graphene filament to eject at around 100m/s, about the speed of a crossbow bolt. 100m/s = 5 x 10^11 carbon atoms ejected per second from each nozzle, in staggered phasing. So, half a terahertz. Easy! That’s well within everyday electronics domains. Phew! If we can do better, we can shoot even faster.

We could therefore soon have a graphene filament ejection device that behaves much like Spiderman’s silk throwers. It needs some better engineers than me to build it, but there are plenty of them around.

Having such a device would be fun for sports, allowing climbers to climb vertical rock faces and overhangs quickly, or to make daring leaps and hope the device works to save them from certain death. It would also have military and police uses. It might even have uses in road accident prevention, yanking pedestrians away from danger or tethering cars instantly to slow them extra quickly. In fact, all the emergency services would have uses for such devices and it could reduce accidents and deaths. I feel confident that Spiderman would think of many more exciting uses too.

Producing graphene silk at 100m/s might also be pretty useful in just about every other manufacturing industry. With ultra-fine yarns with high strength produced at those speeds, it could revolutionize the fashion industry too.

Using carbon to make a Landspeeder or hoverboard

You are probably familiar with Marty McFly’s hovering skateboard and the Star Wars Landspeeder hover-car. How feasible are they? Like most futurists, I get asked about flying cars every week.

Let’s dispose of pedantry first. Flying cars do exist. Some are basically vertical take off planes without the wings, using directed air jets to stay afloat and move. I guess you could use a derivative of that to make a kind of land-speeder. The hovercraft is also a bit Landspeedery, but works differently. Hovercraft are OK, but a Landspeeder floats higher off the ground and without the skirt so it it’s no hovercraft. Well, we’ll see.

Carbon can be used to make a Star Wars Landspeeder or Marty McFly’s hover board from Back to the Future. Both would be almost silent, with no need for messy skirts, fans, or noisy ducted air jet engines, and could looks like the ones in the films. Or you could employ a designer and make one that looks nice instead.


Anti-gravity may one day be possible but we don’t know how to do that yet. Conventional wisdom says that either you use noisy ducted air jets or a hovercraft skirt, or else magnetic levitation, as the Landspeeder is meant to be anyway, which can be done but so far needs a special metal track. It couldn’t work on a pavement or side-walk. You can’t use simple magnetic repulsion effects to levitate above concrete or asphalt.

I pointed out a good while ago with my linear induction bicycle lane idea that you could use a McFly style hover-board on it. My daughter’s friends were teasing me about futurists and hoverboards – that’s why.

That would work. It would be totally silent. However, the Landspeeder didn’t stay on a linear induction mat laid just under the entire desert surface, did it? That would just be silly. If you had a linear induction mat laid under the entire desert surface, you’d put some sort of horse shoes on your camel and it could just glide everywhere at high speed. You wouldn’t need the Landspeeder.

Ignoring conventional wisdom, with some redesign, you can use magnetic levitation to produce a landspeeder or hoverboard that would work on a sidewalk, pavement, road, or even a desert surface. Not water, not the way McFly did anyway. You could also make the hover tanks and everything else that silently hovers near the ground in sci-fi films. And force fields. Sand, asphalt and concrete aren’t made of metal but that doesn’t matter.

Graphene is a really good conductor. Expensive still, but give it a few years and it’ll be everywhere. It is a superb material. With graphene, you can make thin tubes, bigger than carbon nanotubes but still small bore. You could use those to make coils around electron pipes, maybe even the pipes themselves. Electron pipes are particle guides along which you can send any kind of charged particles at high speed, keeping them confined using strong magnetic fields, produced by the coils around the pipe, a mini particle accelerator. I originally invented electron pipes as a high bandwidth (at least 10^22bit/s) upgrade for optical fibre, but they have other uses too such as on-chip interconnect, 3d biomimetic microprinting for things like graphene tubes, space elevator rope and others. In this case, they have two uses.

First you’d use a covering of the pipes on the vehicle underside to inject a strong charge flux into the air beneath the hoverboard (if you’re a sci-fi nut, you could store the energy to do this in a super-capacitor and if you’re really twisted you might even call it a flux capacitor, since it will be used in the system to make this electron flux). The result is a highly charged mass of air. Plasma. So what?

Well, you’d also use some rings of these tubes around the periphery of the vehicle to create a very strong wall of magnetic field beneath the vehicle edge. This would keep the charged air from just diffusing. In addition, you’d direct some of them downwards to create a flow of charged air that would act to repel the air inside, further keeping it confined to a higher depth, or altitude, so you could hover quite a distance off the ground.

As a quick but important aside, you should be able to use it for making layered force fields too, (using layers of separated and repelling layers of charged air. They should resist small forces trying to bend them and would certainly disrupt any currents trying to get through. But maybe they would not be mechanically strong ones. So, not strong enough to stop bullets, but enough to stop or severely disrupt charges from basic plasma weaponry, but there aren’t many of them yet so that isn’t much of a benefit. Anyway… back to the future.

Having done this, you’ll hopefully have a cushion of highly charged air under your vehicle, confined within its circumference, and some basic vents could make up for any small losses. I am guessing this air is probably highly conductive, so it could be used to generate both magnetic and electrostatic forces with the fields produced by all those coils and pipes in the vehicle.

So now, you’d basically have a high-tech, silent electromagnetic hovercraft without a skirt to hold the air in, floating above pretty much any reasonably solid surface, that doesn’t even have to be smooth. It wouldn’t even make very much draft so you wouldn’t be sitting in a dust cloud.

Propulsion would be by using a layer of electron pipes around the edge of the vehicle to thrust particles in any direction, so providing an impulse, reaction and hence movement. The forward-facing and side facing pipes would suck in air to strip the charge off with which to feed the charged air underneath. Remember that little air would be escaping so this would still be silent. Think of the surface as a flat sheet that pushes ionised air through quite fast using purely electromagnetic force.

Plan B would be to use the cover of electron pipes on the underside to create a strong downward air flow that would be smoothed and diffused by pipes doing the side cushion bit. Neither would be visible and spoil the appearance, and smooth flow could still be pretty quiet. I prefer plan A. It’s just neater.

There would be a little noise from the air turbulence created as the air flow for propulsion mixes with other air, but with a totally silent source of the air flow. So basically you’d hear some wind but not much else.

Production of the electron pipes is nicely biomimetic. Packing them closely together in the right pattern (basically the pattern they’d assume naturally if you just picked them up) and feeding carbon atoms with the right charge through them at the right intervals could let you 3D print a continuous sheet of graphene or carbon nanotube. Biomimetic since the tube would grow from the base continuously just like grass. You could even produce an extremely tall skyscraper that way. 30km is a reasonable limit for 2045, but recent figures for graphene strength suggest that structures up to 600km may be theoretically possible by the end of the century.

Could it work. Yes, I think so. I haven’t built a prototype but intuitively it should be feasible. Back to the Future Part 1 takes Marty to Oct 21, 2015. We just passed that and two prototypes hoverboards were available then. Sadly, neither used my technique but a good lab could just about make most and maybe all of this capability any time soon. On the other hand, Star Wars is set very far away and very long ago, so we’re a bit late for that one.

So, feasible, and just a little way in the future. Pretty much the entire vehicle could be carbon based. Carbon fibre and carbon foam would provide most of the structure, graphene windows for streamlining, strength, protection and transparency, graphene and carbon nanotubes for engines, power and levitation.

Carbon Devices site update

I have just updated all the posts on this blog and removed most of the references to my scifi novel so it is now just the ideas without their original context (some were designed specifically as solutions to story plots). It will still be about carbon materials, inventions, uses and abuses.

My book Space Anchor is still available, but I don’t have any current plans to write a sequel. It is about Carbon Girl, her partner Carbon Man and their mostly independent adventures. It’s good fun. Buy it!

Tackling tornados and hurricanes: The extractor

A tornado has several orders of magnitude less energy than a hurricane, but both can kill people and create enormous damage to lives and property. It would be good to be able to reduce their force by sapping away their energy. The extractor does that. The energy extracted would be in electrical form and could be beamed by microwave to a rectenna array. These would be spread around the areas that suffer most and their costs offset by the high value of the energy collected.

An extractor would be large scale engineering in the sense that it would be very large, but it need not be especially heavy. It would actually be a fairly free-moving but tethered aerial wind farm. Size would be a few kilometres across up to 50km. Depth would be 200-300m.

It could be made entirely of carbon – carbon foam for buoyancy of the structure, graphene or carbon fibre supports and beams to hold the structure together and give the rigidity needed to sap energy from the storm, graphene capacitors for the vertical axis micro-turbine blades, and super-capacitors to store energy pending transmission, graphene string as the spindles for the blades and as wires to conduct the electricity around.

The pieces holding the structure would have a very strong graphene core, lined with buoyant carbon foam, and therefore need little weight still to be supported, so could easily be floated up from the ground and assembled mid air, using carbon foam balloons to hold the assembly platforms, and a high altitude carbon foam balloon could drag it into place and hold it in the storm vicinity once ready.

The struts all lock together to form a fairly rigid structure, but one that could bend a great deal before any damage would result. An extractor could be fifty kilometres across to sap energy from a large storm such as a hurricane, but just a few kilometres would do for a more tightly focused event such as a tornado.

100m square sails would be hung between the struts. Each sail would be made of hundreds of thousands of small S-shaped carbon capacitors, held on a graphene string spindle. As the wind blew on them, the concave side of each capacitor would catch the wind and be forced through a narrow gap. That would bend it further. When it cleared the gap, it would spring back to its normal curvature before being bent and straightening again as it passed through the gap on the other side. The difference in drag between the concave and convex sides provided the force to push the blades through the gaps, and the flexing of the carbon capacitors made the separation between the plates vary, thus creating a voltage change and electrical current. That electrical energy extraction meant less energy for the storm. The electricity was passed through graphene strings to a collector cable which carried the huge aggregated current from each sail.

The overall force on each sail would be high, but the super-strength carbon materials they are made from are easily up to the job. The enormously strong winds in a tornado or hurricane would create massive forces that should normally cause a large sail to be carried with the wind, but due to the massive size of the overall extractor structure, the wind movements at each sail are very different and forces in one direction on the wider structure would be balanced against forces in another. Overall the array creates massive drag that slows the winds. The individual tiny rotating vertical axis vanes don’t care which way they were heading. As long as there is some local relative movement of the air, they would be able to extract energy from that area. High stresses would be generated but the strength of the graphene struts would withstand them. The overall effect would be that the whole array would wander around a bit, but its overall position would be determined by the balloon supporting it far above. The powered balloon would follow the path of the storm and extract as much energy from it as possible, transmitting it by intense microwave beams to earthbound rectenna arrays that have been situated in the areas usually affected.

In this way, huge energy could be extracted from a storm. A tornado could quickly be drained of almost all of its energy and rendered harmless. A hurricane would take longer. Its total energy was many orders of magnitude greater than a tornado, and its overall force would be more gradually siphoned away. Each 100m square sail could extract a few megawatts, and there were a thousand of them on the largest extractors. Siphoning off several gigawatts from a large hurricane could downgrade it substantially within a matter of hours, saving many lives and enormous saving of property damage. The free electricity is just an added bonus. Tornadoes are far smaller and easier to deal with than hurricanes and could quickly be made totally harmless.

My first sci-fi book about Carbon Girl and Carbon Man novel is now out

Well, Carbon Girl and Carbon Man now have their first novel. It is called Space Anchor. It is available through all the usual amazon routes. I used CreateSpace print-on-demand for the paper version. The price is the lowest I was permitted.

Obviously it features a lot of carbon uses. The main character is Carbon Girl but Carbon Man gets in on the action a lot too.

Paperback version:


And the e-book version. Content in both is identical. Only the cover is different.

kindle cover

It is my first sc-fi novel, and I am pleased with it. It is based to some degree on my day job futurology and a lot of it is feasible, but of course some isn’t. It is set in 2092, and of course technology has to exist before you can use it. Some will be here decades before then, such as having large quantities of cheap graphene to play with, but some of the stuff like the space elevator, space anchor, Heisenberg Resonators, some speculative forms of carbon, and certainly their 600km tall home – well, they can’t be done much before that.

A lot of the tech is biomimetic, that is, its basic principles are based on how nature does things, and then some of the techniques are improved on. So the materials are often grown,self organisation is widely used, and even the AI development route follows quite a natural path.

The novel features some AI conflict and romance, some zombies, and some early space exploration, with a nod of recognition to some of the other issues that may arise from AI and trans-human development.

The Helmet of Truth v the Thinking Cap

Trans-cranial magnetic stimulation (TMS) has been around a while now. I suggested one of the future social problems we’d have to deal with is electronic drugs, where different parts of the brain are either effectively switched off or stimulated while drugs in smart release capsules can be ingested in advance by the clubbers but stay inactive until commanded remotely by a club DJ.

Similar technology is used in the Helmet of Truth. Although in a somewhat murky area of international law, it is used to get captives to tell the truth, just like a truth serum, but by deactivating parts of the brain by rapidly changing magnetic fields instead of chemicals. The magnetic fields needed for this are very high, but graphene is a superb electrical conductor, so lends itself well to making powerful electromagnets. Combining fields from phased arrays allows currents to be stimulated at specific locations deep in the brain. Electrically stimulating specific regions in the brain can cause memories to be stimulated involuntarily. Since thoughts can already be detected with sufficient accuracy to tell what video a person is thinking about, this could be used to scan a subject’s memory for secrets. As it progresses, though recognition will be capable of recognising a wide range of thoughts and emotions. Coupling this to TMS and phased array technology therefore provides the basis of a painless but effective interrogation process, albeit one of dubious morality.

Should anyone use such a tool? Under what circumstances? Under what jurisdiction and supervision, with what safeguards? I’d feel quite uneasy about letting hem have this, but it won’t be my choice.

It does have a more positive side though. TMS is already being researched and used for medical treatments, and also to increase the learning capacity, and improve concentration. If it can be used to scan the memory to replay memories, hence refreshing them, then it could be a valuable learning tool that keeps learned knowledge from being forgotten so badly. Wasn’t it Edward de Bono who proposed the thinking cap? I guess this would fill that role nicely.